
JCC LogMiner Loader
Version 3.6

Released February, 2019

 From the JCC Toolset for Databases

Table of Contents

Contact Information ..3
Notices ...5
Chapter 1 - JCC LogMiner Loader Kafka Option7

Kafka Option ...8
Regression Testing .. 9
Kafka Documentation and Licensing 10
Introduction to Kafka for Rdb Users 10

Kafka ..10
Producer ...10
Consumer ...10
Messages ..11
Topics ...11
Kafka Clusters ..11
Zookeeper ..11
Additional Kafka Details and This Document11

Introduction to Rdb for Kafka Users 12
OpenVMS ..12
Transactions ...12
Push ..12

Guide to the Documentation ... 13
Chapter 2 - Installation ...15

Kafka Libraries ...15
Apache Kafka Windows Installation16
Confluent Kafka Installation ..17
Kafka Libraries from VMS Software, Inc.17

Kafka Library Location ... 18
VMS Privileges Needed with Avro 18
JCC Local Environment Command Procedure 19

Configuring the Local Environment19
Example Startup ...20

Chapter 3 - Control File ..21
Output Keyword and Kafka ... 22

Syntax .. 22
Example ... 22

Keyword: Kafka ...23
Syntax .. 23
Parameters ... 23

Keyword: Kafka~connect .. 23
Syntax .. 23
Parameters ... 23
Example ... 24

Keyword: Kafka~classpath ...24
Syntax .. 24
Parameters ... 24
Example ... 24

Keyword: Kafka~topic .. 24
Syntax .. 24
Parameters ... 25
Examples ... 25

Keyword: Kafka~model ...25
Syntax .. 26
Parameters ... 26
Examples ... 26

Keyword: Kafka~header ...26
Syntax .. 26
Parameters ... 26
Examples ... 27

Keyword: Kafka~Avro ...27
Syntax .. 28
Parameters ... 28
Examples ... 28

Keyword: XML .. 28
Header Syntax ... 29
NULL Syntax .. 29

Keyword: JAVA ...30
Syntax .. 30
Parameters ... 30
Example ... 30

Extensions to Existing Keywords 30

Creating the Control File and Kafka Topics 30
Kafka Topics: Example 1 ..31

Chapter 4 - Notes for the Loader Administrator35
Java Properties File .. 35

Batch Size ..36
Linger.ms ...36
Tuning with the Java Properties File36

SSL Encryption .. 36
Java Properties File with SSL ..37

Additional Tuning for Kafka Producer Performance ... 39
Kafka Model .. 39

ExactlyOnce ...40
Transaction ...40

Logical Names ...41
Kafka Partitions and Keys ... 41
Date and Timestamp Precision with Avro 42
Comparison of Rdb and Avro Datatypes 43

Chapter 5 - Output Format Examples45
XML Format for Kafka .. 46

Kafka Specific Configuration Directives - XML46
XML Message Example ..47

JSON Format for Kafka .. 48
Kafka Specific Configuration Directives - JSON48
JSON Message Example ..49

AVRO Format for Kafka ... 50
Avro and Schema Registration ..51
Avro Configuration File Example:51
Avro Message Example ...54

Chapter 6 - Kafka Command Examples55
Setting the Environment for the Examples55
Start a Consumer Console ... 56
Start a Producer Console .. 57
List Topics ...57
See Details of a Topic .. 58
Change the Partitions for a Topic 58

Create a New Topic ...59
Check the status of Consumers 60

Contact Information

For JCC LogMiner Loader licensing and support, contact JCC Consulting.

JCC Consultants are also eager to hear your comments, questions, and
examples.

JCC also provides consulting for solution architectures and on-site sup-
port for database review and for getting started with new architectures.
Training and temporary licenses are available.

E-mail JCC-LMLoader@JCC.com
Phone +1 (740)587-0157

FAX +1 (740)587-0163
Post Office LogMiner Loader

JCC Consulting, Inc.
Box 381
Granville, OH 43023

Notices

Copyright © 2002 - 2019 JCC Consulting, Inc.

All Rights Reserved
This publication is protected by copyright and all rights are reserved. No
part of it may be reproduced or transmitted by any means or in any form
without prior consent in writing from JCC Consulting, Inc.

The information in this manual has been carefully checked and is
believed to be accurate. However, changes to the product are made peri-
odically. These changes are incorporated in new publication editions. JCC
Consulting, Inc. may improve and/or change products described in this
publication at any time. Due to continuing system improvements, JCC
Consulting, Inc. is not responsible for inaccurate information that may
appear in this manual. For the latest product updates, consult the JCC
Consulting, Inc. web site at www.jcc.com or consult JCC in any of the
ways indicated in the “Contact Information” on page 3. In no event will
JCC Consulting, Inc. be liable for direct, indirect, special, exemplary, inci-
dental, or consequential damages resulting from any defect or omission in
this manual, even if advised of the possibility of such damages.

This product should not be used in any industry or fashion for which the
underlying database products are not valid.

In the interest of continued product improvement, JCC Consulting, Inc.
reserves the right to make improvements in this manual and the products
it describes at any time, without notices or obligations.

This file and the LogMiner Loader software are confidential and propri-
etary to JCC Consulting, Inc. All documentation and the LogMiner Loader
software are provided on an AS-IS basis.

Trademark Acknowledgments
JCC Toolset and JCC LogMiner Loader are trademarks of JCC Consult-
ing, Inc. LogMiner, Oracle Rdb, Oracle 12 (and multiple other versions),
MySQL, and Tuxedo are trademarks of Oracle Corporation. Windows (in
its multiple versions) and SQL Server are trademarks of Microsoft Corpo-
ration. MariaDB is a trademark of MariaDB Corporation. Teradata is a
trademark of Teradata Corporation. DB2 is a trademark of IBM Corpora-
tion. OpenVMS is a trademark of Hewlett Packard Enterprise (HPE).
OpenVMS is also available from VSI (VMS Software Inc.) which holds the
copyright to versions created by VSI. Apache, Apache Kafka, Kafka, and
associated open source project names are trademarks of the Apache
Software Foundation.

Uses in this Document
In this document, Oracle Rdb and Oracle’s other RDBMS are referred to
frequently and need to be distinguished. Consequently, Oracle Rdb is
referred to as “Rdb” and Oracle’s other database product (whatever its
version) is referred to simply as “Oracle.” Similarly, Oracle Rdb LogMiner
is referred to as “Rdb LogMiner” or as “LogMiner.” The JCC LogMiner
Loader is sometimes referred to simply as “the Loader”.

Disclaimer

This software is provided as is, without warranty of any kind. All express
or implied conditions, representations and warranties, including any
implied warranty of merchantability, fitness for particular purpose, or non-
infringement, are hereby excluded to the extent permitted by applicable
law. In no event, will JCC be liable for any lost revenue or profit or for spe-
cial, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, with respect to software
made available here.

JCC LogMiner Loader 7

CHAPTER 1 JCC LogMiner Loader
Kafka Option

Kafka is a message transport that is receiving increasing attention for
use in advanced data architectures. The JCC LogMiner Loader is an
established tool for collecting changes made to an Oracle Rdb data-
base, transforming them as needed, and publishing them to a variety
of databases and tools. The JCC LogMiner Loader Kafka Option
combines these facilities to provide Rdb transactional data to a data
lake or for evaluation with streaming analytical tools or for additional
processing by a wide variety of existing and newly emerging soft-
ware and tools.

Release 3.6 of the JCC LogMiner Loader is concurrent with release
of the Kafka Option. The JCC LogMiner Loader Kafka Option is an
add-on to the base JCC LogMiner Loader capabilities and requires an
additional license. Trial licenses are available for proof of concept
testing. Contact JCC to discuss licensing or other questions. Training
and consulting for both detailed support and architectural review are
also available from JCC.

JCC LogMiner Loader Kafka Option

8 JCC LogMiner Loader

None of this documentation attempts to provide a complete descrip-
tion of the JCC LogMiner Loader or of any of the Kafka distribution
variants. For that, please consult the relevant documentation.1

Kafka Option
Kafka software uses a Publish – Subscribe (Pub-Sub) model. Software (in this case
the JCC LogMiner Loader) publishes messages to a Kafka server. One or more
“subscribers” can consume those messages. Messages are published by the Kafka
software to one or more “topics”. Topics can be created in advance or created the
first time a message is published to that topic. The exact naming of the topics used
by the JCC LogMiner Loader can be controlled in the JCC LogMiner Loader Con-
trol File2.

The JCC LogMiner Loader does not include Kafka consumers. The consumers are
the responsibility of the project that will be using the Kafka data.

There are a number of Kafka distributions, including:

• Apache Kafka (https://kafka.apache.org/)
• Confluent Kafka (https://www.confluent.io/)

•Confluent Open Source
•Confluent Enterprise (licensed, supported)

The JCC LogMiner Loader Kafka Option can publish data in three formats3:

• XML
• JSON
• AVRO with Schema Registration.

1. The complete JCC LogMiner Loader documentation is available for download from
http://www.jcc.com/products/jcc-logminer-loader-and-data-pump. For pointers to Kafka
documentation, see “Kafka Documentation and Licensing” on page 10.

2. The Loader Control File is discussed in “Control File” on page 21 and elsewhere.
3. These formats are discussed further in “Output Format Examples” on page 45 and else-

where.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 9

Regression Testing

In addition, the JCC LogMiner Loader Kafka option supports publishing data either
in plain text or using SSL encryption1.

Kafka documents these models2 for publishing messages:

• ExactlyOnce
• Transaction

The current release of the JCC LogMiner Loader supports both with Transaction as
the default.

Regression Testing

The JCC LogMiner Loader regression tests use a number of different Kafka ver-
sions, distributions, and configurations. The Kafka options are added to existing
JCC regression testing which is automated and includes random choices for settings
for features.

Regression testing for the JCC LogMiner Loader Kafka Option uses Apache Kafka
for some of the testing of the XML and JSON formats. Apache Kafka is an open-
source message broker that uses the Publish – Subscribe (Pub-Sub) model. Publish-
ing to Kafka in XML and JSON formats are supported with any V1.0 (or later)
Kafka distribution.

Publishing in AVRO format with Schema Registration requires a Confluent Kafka
distribution, as Confluent Kafka supports Schema Registration capabilities that are
not available in the Apache Kafka distribution. The JCC LogMiner Loader supports
Schema Registration through use of Confluent Kafka.

1. SSL is discussed in “SSL Encryption” on page 36 and elsewhere.
2. Kafka Models, as used with the Loader, are discussed in “Kafka Model” on page 39 and

elsewhere.

JCC LogMiner Loader Kafka Option

10 JCC LogMiner Loader

Kafka Documentation and Licensing

Apache Kafka V1.0 documentation is available from https://kafka.apache.org/10/docu-
mentation.html. Apache Kafka is covered by Apache License V2.0.

Documentation for the Confluent Kafka distribution is available at https://docs.con-
fluent.io/current/. Confluent Open Source is covered by Apache License V2.0.

For Apache License V2.0 details, see http://www.apache.org/licenses/.

Introduction to Kafka for Rdb Users
When using the JCC LogMiner Loader to publish Rdb data to a Kafka server, it is
helpful to understand the Kafka terminology. The following sections provide a
high-level introduction to Kafka.

Kafka
Kafka is an open source utility that supports publishing and consuming messages.
A message published to a Kafka server can be in whatever format the message con-
sumer will understand. The JCC LogMiner Loader Kafka Option publishes mes-
sages in XML, JSON, or Avro formats. The connection to the Kafka server can
either be unencrypted plain text or use SSL encryption.

Producer
A Kafka producer publishes messages to a topic or topics on a Kafka server. In the
case of the JCC LogMiner Loader Kafka Option, the JCC LogMiner Loader is the
producer. The messages published are committed transactions extracted from the
Rdb AIJ files.

Consumer
Kafka consumers subscribe to topics on a Kafka server. When new messages are
published to the Kafka server, they are available to the consumer. The consumer
needs to understand the format of the messages but is otherwise independent of the
producer. The JCC LogMiner Loader Kafka Option does not include a Kafka con-
sumer.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 11

Introduction to Kafka for Rdb Users

Messages
The JCC LogMiner Loader publishes messages to the Kafka server. Each message
corresponds to a record in an Rdb committed transaction. The messages can be
published using XML, JSON, or Avro formats.

Topics
The JCC LogMiner Loader publishes messages to one topic per output table. The
topic names default to the output table name, but can be configured to have any
name chosen. It is also possible to include a variety of additional information, using
VirtualColumns, message headers, and various formatting options.

Kafka Clusters

A Kafka installation can be configured on multiple servers banded together as a
Kafka cluster. A cluster provides the advantage of higher availability and ensures
the consistency of data while supporting parallel operations across the cluster.

Zookeeper
A Kafka installation uses Zookeeper to manage topics and cluster information. A
JCC LogMiner Loader session needs the appropriate Zookeeper address and port to
connect to a Kafka server, but does not need any additional information about the
Zookeeper configuration.

Additional Kafka Details and This Document

The details of all possible Kafka configurations are beyond the scope of this docu-
mentation. Please contact JCC with specific questions that relate to the JCC Log-
Miner Loader and the Loader’s Kafka Option.

JCC LogMiner Loader Kafka Option

12 JCC LogMiner Loader

Introduction to Rdb for Kafka Users

Oracle Rdb 1 is a robust, mature transactional database product.

OpenVMS
Rdb was designed for use on OpenVMS and has not been ported to other platforms.
Consequently, the JCC LogMiner Loader runs on OpenVMS. A basic understand-
ing of Rdb and OpenVMS topics and, of course, a knowledge of JCC LogMiner
Loader options will facilitate your architecture and use.

Transactions
Rdb supports ACID (Atomic, Consistent, Isolated, Durable) transactions. That is,
processes that change the data in an Rdb database cause a transaction to start and
the changed data is not visible in the database unless and until the transaction is
committed. A transaction takes the database from one consistent state to another
with no partial changes. If a transaction is rolled back, the changes do not occur.

Data changes are not available until the transaction is completed. As part of the
transaction commit, the changes are recorded in the Rdb After Image Journal
(AIJ)2. When Rdb is configured to support the LogMiner, the AIJ is read by the
Rdb LogMiner command (RMU/Unload/After/Continuous). When used with the
JCC LogMiner Loader, the LogMiner writes the changes to an OpenVMS mailbox
that is read by the Loader. The Loader processes the data and writes the changes to
the Loader target.

Push
An architecture that includes Rdb and the JCC LogMiner Loader pushes committed
data changes to the Kafka target. This differs from Kafka Connectors that pull data
and are not driven by the transaction log. With the JCC LogMiner Loader Kafka
Option, the data published to Kafka is limited to the data in the committed transac-
tions that have been pushed from the transaction log.

1. Oracle Rdb was purchased by Oracle Corporation from Digital Equipment Corporation in
1994 and has received continuing development. It is referred to here and in other JCC
LogMiner Loader documentation simply as “Rdb”. In this documentation, Oracle’s other
database product is referred to simply as “Oracle”.

2. Rdb’s AIJ corresponds to what other database platforms refer to as the Transaction Log.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 13

Guide to the Documentation

The JCC LogMiner Loader includes a tool called the Data Pump that can assist in
pushing entire tables to a Kafka server. See the chapter on Data Pump in the full
documentation for this valuable tool for setting up the target.

Guide to the Documentation

This document is specific to the Kafka Option of the JCC LogMiner Loader. It will
also be important to consult the full documentation for the JCC LogMiner Loader,
as well as the documentation for other products in the architecture.

TABLE 1. Documentation

Sections in Documentation
for the Kafka Option

Related Resources in the Full
JCC LogMiner Loader Documentation

Chapter 1 - introduction Chapters 1, 2, and 3

Chapter 2 - Installation Chapter 4 - Installaation

Chapter3 - Control File Chapter 13 - Control File

Chapter 4 - Notes for the
Loader Administrator

Chapter 15 - Performance Considerations
Chapter 16 - Aids for the Administrator

Chapter 5 - Output Format
Examples

Kafka specific examples

Chapter 6 - Kafka Com-
mand Examples

Kafka specific examples

Other chapters of interest Chapter 14 - Monitoring an Ongoing Loader Operation
Chapter 17 - Schema Changes, Data Transforms, ...

JCC LogMiner Loader Kafka Option

14 JCC LogMiner Loader

JCC LogMiner Loader 15

CHAPTER 2 Installation

The full documentation for the JCC LogMiner Loader has chapters
on installation and configuration of the JCC Loader product. This
chapter pertains only to the extra installation steps for the Kafka
Option.

Configuration options of special concern to those using the Kafka
Option are covered in “Control File” on page 21 and in the Control
File chapter in the full documentation. Examples there and here
include syntax created for the JCC LogMiner Loader Control File.
That syntax is fully specified in the full documentation.

Kafka Libraries
For the JCC LogMiner Loader to publish data to Kafka, it needs a number of Kafka
routines that exist in a variety of languages, including Java. The JCC LogMiner
Loader uses the Kafka Java libraries to publish messages to a Kafka server.

The Kafka libraries needed on OpenVMS to support the JCC LogMiner Loader
Kafka option are not included in the JCC LogMiner Loader installation kit. The

Installation

16 JCC LogMiner Loader

required libraries must be extracted from a Kafka kit or installation and migrated to
an OpenVMS server.1

Which libraries are required depend on the Kafka output formats that will be used.
If only the XML and JSON output formats are being used, the Apache Kafka librar-
ies are sufficient. If the Avro output format will be used, the Confluent Kafka
libraries are needed. Apache Kafka is open source; Confluent Kafka must be
licensed.

Transferring the Kafka Java libraries to an OpenVMS server requires some manual
steps. These are covered in the following sections.

Apache Kafka Windows Installation
To extract the library:

• Download the Kafka installation to a Windows system. This file has a name
such as kafka_2.11-1.1.0.tgz

• Use 7zip (or some other utility) to extract kafka_2.11-1.1.0.tar from kafka_2.11-
1.1.0.tgz

• Use 7zip (or some other utility) to extract the Kafka folder tree from kaf-
ka_2.11-1.1.0.tar

• FTP the contents of the “libs” folder in binary mode to a directory on the Open-
VMS server. In the example to follow, the contents of the bin folder
DISK$STATIC:[KAFKA.1-1-0.LIBS] are copied

• Reset the Jar file attributes with the command:

$ set file/attr=(rfm:stmlf,rat:cr,lrl:0,mr:0) -
DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar

The directory used on OpenVMS is arbitrary. It can be whatever makes sense in
your environment. The folder will be pointed to in the classpath specification in a
JCC LogMiner Loader Control File. See Keyword: JDBC in the Control File chap-
ter in the full Loader documentation. Also, see an example in the section “Kafka
Specific Configuration Directives - XML” on page 34 of this document.

1. Documentation and licensing for Kafka products must be obtained from the appropriate
source. See “Kafka Documentation and Licensing” on page 10 for assistance.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 17

Kafka Libraries

Multiple JCC LogMiner Loader sessions can use the same Kafka Jar files, so this
step only needs to be done once.

The example above uses the Apache Kafka V1.1.0 Jar files to publish messages to
an Apache Kafka V1.0.0 server. That version skew has been tested. Future testing
by JCC developers and testers will add more information on how much version
skew can be supported.

Confluent Kafka Installation

The Avro Kafka Option takes advantage of the Confluent Avro Schema Registra-
tion and Serialization and De-serialization routines that are available only with the
Confluent Kafka distribution. On a Confluent Open Source Kafka installation on a
Linux server, the required libraries are in the following folders:

• /usr/share/java/confluent-common
• /usr/share/java/kafka
• /usr/share/java/kafka-serde-tools

The associated license files are in the following folders:

• /usr/share/doc/confluent-common
• /usr/share/doc/kafka
• /usr/share/doc/kafka-serde-tools

In the example for this and the next section, the JAVA libraries from a Confluent
5.0.0 installation have been downloaded to the OpenVMS directory
DISK$STATIC:[kafka.CONFLUENT-5-0-0]

$ set file/attr=(rfm:stmlf,rat:cr,lrl:0,mr:0) -
DISK$STATIC:[kafka.CONFLUENT-5-0-0...]*.jar

Kafka Libraries from VMS Software, Inc.

VMS Software Inc. (VSI) Open-Source libraries contain a Kafka V0.9.5.1 installa-
tion kit:

• vsi-i64vms-librdkafka-v0009-5-1.zip

JCC testing has only used Kafka V1.0 and later releases.

Installation

18 JCC LogMiner Loader

Kafka Library Location

The best location for the Kafka libraries depends on your environment. The above
examples, from the JCC Consulting, Inc. development environment, used a direc-
tory structure DISK$STATIC:[kafka...]. This structure works well for an environ-
ment where multiple Kafka versions and distributions are being tested with
multiple versions of the JCC LogMiner Loader.

In an environment that is relatively static, it may make sense to place the Kafka
libraries in the directory tree jcc_tool_root:[java.lib...]. For example:
$ dire/size=all/date=create/prot jcc_tool_root:[java.lib.kafka.CONFLUENT-4-1-1]

Directory JCC_TOOL_ROOT:[JAVA.LIB.kafka.CONFLUENT-4-1-1]

confluent-common.DIR;1

 1/16 15-NOV-2018 10:05:26.42 (RWE,RWE,RE,RE)

doc.DIR;1 1/16 15-NOV-2018 10:05:27.27 (RWE,RWE,RE,RE)

kafka-serde-tools.DIR;1

 2/16 15-NOV-2018 10:05:28.07 (RWE,RWE,RE,RE)

kafka.DIR;1 8/16 15-NOV-2018 10:05:28.96 (RWE,RWE,RE,RE)

Total of 4 files, 12/64 blocks.

$

VMS Privileges Needed with Avro
According to the “HP TCP/IP Services for OpenVMS Sockets API and System Ser-
vices Programming” documentation, a “process must have SYSPRV, BYPASS, or
OPER privilege to bind port numbers 1 to 1023.”

The Avro Schema Registration uses HTTP or HTTPS, although not on port 80 or
443. However JCC LogMiner Loader testing found that one of these additional
privileges is required when using Avro Schema Registration. JCC Recommends
adding OPER privilege and none of the others.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 19

JCC Local Environment Command Procedure

JCC Local Environment Command Procedure

The JCC LogMiner Loader supports a procedure to define logical names specific to
a local environment called JCC_LOCAL_ENVIRONMENT.COM. See the full
documentation for Version 3.6 for details.

If this procedure exists when the JCC LogMiner Loader startup is executed, the
startup procedure is executed with a parameter that is the appropriate logical name
table.

There is a template procedure in jcc_tool_com that must be copied to jcc_tool_local
directory to be used:

$ copy jcc_tool_com:JCC_LOCAL_ENVIRONMENT.COM -
 jcc_tool_root:[local]*.*/log

The following example shows logical names added when the Confluent Kafka
libraries are installed in the JCC_tool_root:[java.lib] directory tree.

JCC_TOOL_ROOT:[local]JCC_LOCAL_ENVIRONMENT.COM can be modi-
fied as shown in “Configuring the Local Environment” on page 19.

With those additional lines, the next time the JCC LogMiner Loader startup is exe-
cuted, the logical names will be added to the appropriate logical name table. In the
following example in “Example Startup” on page 20, the V3.6 startup was executed
with the MV parameter, so the logical names were added to the JCC_CLML_03_06
logical name table.

Configuring the Local Environment
The following provides the configuration used in the examples.
$! Logical Names to support Kafka

$! 17-Nov-2018

$!

$! define paths for use in JCC LogMiner Loader configuration files

$!

$ define/'p1' confluent_kafka_serde -

 jcc_tool_root:[java.lib.kafka.CONFLUENT-4-1-1.kafka-serde-tools]

$ define/'p1' confluent_common -

 jcc_tool_root:[java.lib.kafka.CONFLUENT-4-1-1.confluent-common]

$ define/'p1' confluent_kafka -

 jcc_tool_root:[java.lib.kafka.CONFLUENT-4-1-1.kafka]

Installation

20 JCC LogMiner Loader

$!

$! define class path logical for use with Kafka command line tools

$!

$ define/'p1' confluent_kafka_path -

 jcc_tool_root:[java.lib.kafka.confluent-4-1-1.kafka-serde-tools], -

 jcc_tool_root:[java.lib.kafka.confluent-4-1-1.confluent-common], -

 jcc_tool_root:[java.lib.kafka.confluent-4-1-1.kafka]

$!

Example Startup

This startup is executed with the MV parameter.1
$ show log/table=JCC_CLML_03_06

(JCC_CLML_03_06)

 "CONFLUENT_COMMON"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.CONFLUENT-COMMON]"

 "CONFLUENT_KAFKA"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.KAFKA]"

 "CONFLUENT_KAFKA_PATH"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.KAFKA-SERDE-TOOLS]"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.CONFLUENT-COMMON]"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.KAFKA]"

 "CONFLUENT_KAFKA_SERDE"

 = "JCC_TOOL_ROOT:[JAVA.LIB.KAFKA.CONFLUENT-4-1-1.KAFKA-SERDE-TOOLS]"

 "JAVA$JCC_LOGMINER_LOADER_JDBC2_SHARE_SHR"

 = "JCC_LOGMINER_LOADER_JDBC2_SHARE"

 "JCCLML_INSTALLED_VERSION"

 = "T03.06.00"

 "JCCLML_LINK_DATETIME"

 = " 9-NOV-2018 16:41:23.39"

 "JCC_LOGMINER_LOADER_BASE_SHARE"

 = "JCC_TOOL_SHARE:JCC_LOGMINER_LOADER_BASE_SHARE.EXE"

 ...

1. Spacing and line feeds are added to improve readability.

JCC LogMiner Loader 21

CHAPTER 3 Control File

The Administrator(s) for the JCC LogMiner Loader control the
actions of the Loader through a set of logical names1 and through the
Control File.

The Control File is made up of keywords. Each keyword has specific
syntax and may have both required and optional parameters.

For those not familiar with the JCC LogMiner Loader, it may be
important to read the first few sections of the Control File chapter in
the full documentation, as well as any sections related to specific key-
words that are referenced here.

This chapter includes

• Update to the Output keyword
• Section for each keyword introduced to support the Kafka Option

1. Logical names are discussed in the full documentation and in “Logical Names” on
page 41.

Control File

22 JCC LogMiner Loader

• Section that mentions keyword enhancements designed for the Kafka Option
and added to the general release

• Section that describes enhancements to the procedure that can be used to gener-
ate a Control File.

Output Keyword and Kafka

The output keyword specifies the kind of target data store the Loader will be main-
taining.

Syntax
OUTPUT~<output type>[~<synchronous>[~<output target> \
[~<message contents>[~<output conversion>]]]

Parameters
<output type>. The Kafka output type is required for the Kafka Option.

Remaining parameters. The remaining parameters for the Output Keyword are
generally optional. However, for Kafka, there are two specifics.

The synchronous/asynchronous choice used with some Loader topics is inappropri-
ate. Synchronous is used whether or not it is specified, although Kafka itself sup-
ports much asynchronous activity.

The output conversion must be specified. Options are XML, JSON, and AVRO.
Examples follow.

See the full documentation for specifics of the other parameters.

Example
output~Kafka~synch~connect~record~JSON

Additional examples are available in “Output Format Examples” on page 45.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 23

Keyword: Kafka

Keyword: Kafka

All keywords that begin with Kafka are related solely to the Kafka Option. Some of
them may have parallels for other target options.

Syntax
Kafka~<attribute>~<value>

Parameters

<attribute>. The following attributes are supported. Each is described as a separate
keyword in the following sections.

• CONNECT (optional)
• CLASSPATH (required)
• TOPIC (optional)
• MODEL (optional)
• HEADER (optional)
• AVRO (required, if output conversion is AVRO)

<value>. The value options vary with the attribute. See the following sections for
details.

Keyword: Kafka~connect

Optionally, define the Kafka broker list.

Syntax
Kafka~connect~<Kafka boot servers>

Parameters

<Kafka boot servers>. This is a comma separated list of bootservers and the aso-
ciated ports.

Control File

24 JCC LogMiner Loader

Example

See “Define connect” on page 52 and other examples in that appendix.

Keyword: Kafka~classpath

Definition of the classpath is required when using the Kafka Option.

Syntax
Kafka~classpath~<required jar file for JDBC driver>

Parameters

<required jar file for JDBC driver>. This should be the path to the Kafka jar
files. Note that the Kafka classpath must be specified in OpenVMS format with the
wildcard.

Example
kafka~classpath~DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar

See also “Define the classpath” on page 46 and “Define the classpath” on page 49.

Keyword: Kafka~topic

Optionally, define the topics. Note that the topic names must be coordinated with
the Kafka application.

Syntax
Kafka~topic~<tag>|<quoted constant>[,tag|<quoted constant> \
[,tag|<quoted constant>]...]

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 25

Keyword: Kafka~model

Parameters

<tag>|<quoted constant>. The topics are either tags or quoted constants.1 These
are concatenated into a string. One topic is required (if the keyword is used), addi-
tional ones are optional. Valid characters are any alphanumeric character, plus,
period (‘.’), underscore (‘_’), and dash (‘-’). Maximum length is 249 characters.

Examples

The following examples show values for <topic> and the resulting topic name. The
first row is the default. The table name (or the text that is it renamed2) will be used
as the topic name, if no other is provided.

The topic naming must be coordinated with the Kafka consumers.

Keyword: Kafka~model
The Kafka Model is also discussed in “Kafka Model” on page 39. This is an
optional parameter. Transaction, as described in that section is the default. This
keyword is not required unless a different model is desired.

1. Quoted constants must use single quotes.
2. Renaming is done with the target table rename parameter of either the Table Keyword or

the MapTable Keyword.

TABLE 1. Topics and Resultant Text

Topic Text for Topic Name

table_name “<MapTable [re]name>”

'xml.',Table_Name "xml.<MapTable [re]name>"

Loadername, ‘.json.’, Table_Name “<LoaderName>.json.<MapTable [re]name>”

Loadername,’.’, Table_Name “<LoaderName>.<MapTable [re]name>”

Table_name,Loadername “<MapTable [re]name><LoaderName>

‘SingleTopicforAll’ “SingleTopicforAll”

Control File

26 JCC LogMiner Loader

Syntax
Kafka~model~<choice of model>

Parameters

Attribute. Model types are Transaction and ExactlyOnce. Transaction is the
default.

Value. The value is dependent on the attribute.

Examples
Kafka~model~transaction
Kafka~model~ExactlyOnce

Note that, since TRANSACTION is the default, the first example changes nothing.

Keyword: Kafka~header

In some Kafka environments, there is a requirement to publish headers with each
message. The JCC LogMiner Loader Kafka Option provides configuration direc-
tives to customize the header information that will be published.

Syntax
Kafka~header~name~<tag>|<quoted constant> \
[,tag|<quoted constant>[,tag|<quoted constant>]...]

Parameters

name. <a string to name the header>

TABLE 2. Avro Attributes and Values

Attribute Value

Transaction Use start/commit/rollback transactions

ExactlyOnce Use Kafka ExactlyOnce semantics

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 27

Keyword: Kafka~Avro

<tag>|<quoted constant>. The topics are either tags or quoted constants.1 These
are concatenated into a string. One header is required (if the keyword is used), addi-
tional ones are optional. Valid characters are any alphanumeric character, plus,
period (‘.’), underscore (‘_’), and dash (‘-’). Maximum length is 249 characters.

Examples

The following example is from the Kafka regression test:

!
! The following are published with messages as the
! Kafka Message Header
!
kafka~header~DF_SCHEMA~'RegTest.',Table_Name
kafka~header~DF_SOURCE~'JCCRegTest'
kafka~header~DF_ENTITY~Table_Name
kafka~header~DF_UTID~loader_sequence_number
kafka~header~DF_UTID_T~'',loader_sequence_number-
kafka~header~DF_ACTION~action
!
! DF_UTID will be sent as a 8 byte numeric
! DF_UTID_T will be sent as a text string because it
! contains multiple values
! DF_ACTION will contain M (modify) or D (delete)
!

The names (DF_SCHEMA, etc.) are arbitrary strings. The values can be quoted
strings and/or most of the JCC LogMiner Loader virtual columns2. Multiple items
must be separated by commas.

Keyword: Kafka~Avro

If output~Kafka~...~AVRO is used, it must be followed by two other keyword
structures that are required.

1. Quoted constants must use single quotes.
2. See “Extensions to Existing Keywords” on page 30 and the VirtualColumn keyword in

the Control File chapter of the full documentation.

Control File

28 JCC LogMiner Loader

Syntax
Kafka~Avro~<attribute>~<value>

Parameters

Attribute. Recognized attributes are SchemaRegistry and NameSpace. Both are
required.

Value. The value is dependent on the attribute.

The Avro NameSpace qualifies schema definitions to prevent name collisions
between different sources. It is the name of the location within the Avra Schema
Registry where the record definitions for the tables the Loader sends will be saved.

Examples

See an extensive AVRO example in “AVRO Format for Kafka” on page 50.

Keyword: XML

XML is a supported option for the <output conversion> parameter of the output
keyword. XML can be used with multiple types of targets, including Kafka targets.

The XML keyword is not generally used because the defaults that are defined are
highly likely to be what is wanted. See the full documentation for more discussion
on this.

Attributes that were new with the JCC LogMiner Loader Version 3.6 were intro-
duced because of their importance in some Kafka implementations.

TABLE 3. Avro Attributes and Values

Attribute Value

SchemaRegistry <Avro Schema Registry URL>

NameSpace <Avro NameSpace>

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 29

Keyword: XML

Header Syntax

By default, the Loader includes a header for XML output. The header has two parts:
one called Prolog and one called DOCTYPE.

Prolog consists of “<?xml version=’1.0’?>” which specifies the version of the
XML standard that is used for this XML document.

DOCTYPE consists of “<!DOCTYPE pkt SYSTEM ‘packet-commented.dtd’>”.
The JCC LogMiner Loader DTD’s can be found in JCC_TOOL_-
ROOT:[SOURCE].

Because some Kafka related products do not support this header, the Loader has
been modified to include a keyword for the XML header. The syntax has four
options.

NULL Syntax

There are two alternative values for the XML keyword to indicate whether to show
columns with NULL values.

XML~NULL~explicit|implicit

Explicit is the default and the specification is not required, unless implicit is
desired. Explicit lists null columns.

Implicit causes the Loader to not list null columns. However, there are actually
three possible results, depending on how the column itself is defined. Keywords for
Column and for MapColumn include the option of defining <value if null>. If a

TABLE 4. XML Header Options

Syntax Result

XML~Header~Prolog,DOCTYPE The default includes both parts of the header.

XML~Header~ Includes neither part of the default header.

XML~Header~Prolog Include the part of the default header called
prolog, but not the part called DOCTYPE

XML~Header~DOCTYPE Include the part of the default header called
DOCTYPE, but not the part called Prolog

Control File

30 JCC LogMiner Loader

value definition for null is specified, that value replaces NULL. In which case, for
this column, implicit and explicit have the same effect.

Keyword: JAVA

The Keyword JAVA is used to define a file to be read by JAVA and the Loader.

Syntax
JAVA~PROPERTIES~<filename>

Parameters

The file named must be readable by JAVA and the Loader.

Example

See “Java Properties File” on page 35.

Extensions to Existing Keywords

VirtualColumn and MapColumn are standard keywords for the Loader. Version 3.6
of the Loader which is released along with the Kafka Option introduces wildcard-
ing for VirtualColumns and MapColumns. The full documentation for the JCC
LogMiner Loader Version 3.6 and the release notes for Version 3.6 described wild-
carding.

Creating the Control File and Kafka Topics
The command JCC_LML_CREATE_CONTROL_FILE is provided with the stan-
dard Loader kit. The procedure it names can be used to create a Control File. Ver-
sion 3.6 adds a Kafka specific option for this routine: KAFKA_TOPICS.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 31

Creating the Control File and Kafka Topics

Using KAFKA_TOPICS creates a file named <db file>_CREATE_TOPICS.COM
with command line statements to create Kafka topics. This is useful for Kafka envi-
ronments that require topics to explicitly be created. The commands can be modi-
fied by defining DCL symbols prior to running the procedure.

The symbols and their default values are:

These symbols do not need to be defined if the default values are correct for a spe-
cific application.

The syntax for creating the KAFKA_TOPICS procedure is:

$ JCC_LML_CREATE_CONTROL_FILE <db> KAFKA_TOPICS

Kafka Topics: Example 1

The following example shows the generation of a KAFKA_TOPICS command pro-
cedure using the default settings and part of the generated procedures.

$ jcc_lml_create_control_file mfp_db kafka_topics
JCC_ROOT:[KEITH.SQL_CLASS.LML_KAFKA]MF_PERSONNEL_CREATE_TOP

ICS.COM;15 33 lines
[EOB]
%DELETE-I-FILDEL, JCC_ROOT:[KEITH.SQL_CLASS.LML_KAFKA]MF_PER

SONNEL_CREATE_TOPICS.COM;14 deleted (515 blocks)
$ type MF_PERSONNEL_CREATE_TOPICS.COM

$!
$! JCC LogMiner Loader Kafka Create Topic procedure
$! Generated at 2018-11-26 11:10:13
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper cnflnt4-04:2181 -

Item Default Setting

JCC_KAFKA_TOPIC "$ java -cp /confluent_kafka_path/*:.
kafka.admin.TopicCommand"

JCC_ZOOKEEPER_ADDRESS "cnflnt4-04:2181"
JCC_TOPIC_PREFIX ""
JCC_TOPIC_PARTITIONS "6"
JCC_TOPIC_REPLICATION "2"

Control File

32 JCC LogMiner Loader

 --create -
 --topic CANDIDATES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper cnflnt4-04:2181 -
 --create -
 --topic COLLEGES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper cnflnt4-04:2181 -
 --create -
 --topic DEGREES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper cnflnt4-04:2181 -
 --create -
 --topic DEPARTMENTS -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper cnflnt4-04:2181 -
 --create -
 --topic EMPLOYEES -
 --partitions 6 -
 --replication-factor 2
...

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 33

Creating the Control File and Kafka Topics

Kafka Topics: Example 2

This example changes the default value for JCC_ZOOKEEPER_ADDRESS to a
different Kafka node and JCC_TOPIC_PREFIX to include prefix information:

$ JCC_ZOOKEEPER_ADDRESS = "confluent01:2181"
$ JCC_TOPIC_PREFIX = "JCC.MFP."
$ jcc_lml_create_control_file mfp_db kafka_topics
JCC_ROOT:[KEITH.SQL_CLASS.LML_KAFKA]MF_PERSONNEL_CREATE_TOP

ICS.COM;19 33 lines
[EOB]
%DELETE-I-FILDEL, JCC_ROOT:[KEITH.SQL_CLASS.LML_KAFKA]MF_PER

SONNEL_CREATE_TOPICS.COM;18 deleted (515 blocks)
$ type MF_PERSONNEL_CREATE_TOPICS.COM
$!
$! JCC LogMiner Loader Kafka Create Topic procedure
$! Generated at 2018-11-26 11:18:20
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.CANDIDATES -
 --partitions 6
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.COLLEGES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.DEGREES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.DEPARTMENTS -
 --partitions 6 -
 --replication-factor 2

Control File

34 JCC LogMiner Loader

$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.EMPLOYEES -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.EMPLOYEES_TEST -
 --partitions 6 -
 --replication-factor 2
$ java -cp /confluent_kafka_path/*:. -
 kafka.admin.TopicCommand -
 --zookeeper confluent01:2181 -
 --create -
 --topic JCC.MFP.Employees1 -
 --partitions 6 -
 --replication-factor 2
...

Note that the default values for KAFKA_TOPIC need to be changed to match the
requirements for the Kafka Server in your environment.

JCC LogMiner Loader 35

CHAPTER 4 Notes for the Loader
Administrator

This chapter includes a number of other discussions pertinent to suc-
cessful implementation of the JCC LogMiner Loader Kafka Options.
The full documentation for the Loader will provide additional under-
standing, particularly the chapters on Performance Consideration and
Aids to the Administrator.

Java Properties File

The following example Properties file contains two Kafka Producer parameters that
have been modified to tune a particular Kafka workload:
#
kafka_avro.properties
#
2018-10-19 kwh
increase batch.size and linger.ms in an attempt to increase throughput
#
batch.size=65536
linger.ms=25
#

Notes for the Loader Administrator

36 JCC LogMiner Loader

Batch Size

The example shows batch.size=65536. Batch size is the number of bytes to collect
before sending messages to the Kafka broker. The default is 16384. Increasing this
can delay message transmission and/or increase overall throughput.

Linger.ms

The example shows linger.ms=25. Linger.ms is the number of milliseconds to wait
before sending a buffer of messages to the Kafka broker. The Kafka default is to
send immediately when data is available, but the JCC LogMiner Loader sets this
value to 20. Increasing linger.ms will reduce the number of network packets but
may increase message latency.

Tuning with the Java Properties File

In each case, increasing the default may increase overall throughput, but delay the
transmission of an individual message. The appropriate value for these producer
parameters is highly dependent on the mix and frequency of the source transactions
as well as the configuration of the network and the distance of the Kafka server,
where the relevant distance is round-trip ping packet time between the OpenVMS
system and the Kafka server.

SSL Encryption

Kafka supports creating a connection between a consumer and a Kafka server either
using plaintext or an encrypted SSL1 connection. The SSL connection can be used
just to encrypt the data while it is on the network or to both encrypt and authenticate
the Kafka producer.

The details of how a Kafka server is configured must be provided by whomever
configures and manages the Kafka server.

1. Technically, Kafka supports TLS (Transport Layer Security) but the Kafka documenta-
tion refers to it as SSL (Secure Socket Layer).

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 37

SSL Encryption

The configuration file statements specific to SSL are listed following the example.
!
! Define the Kafka Avro Specific stuff
!
!
output~kafka~synch~connect~record~Avro
!
kafka~connect~confluent01:9093
kafka~avro~SchemaRegistry~http://confluent01:8081
!
kafka~avro~namespace~RegTest.avro
!
! routine to expand wildcards does not work on unix-style names.
!
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.kafka-serde-tools]*.jar
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.confluent-common]*.jar
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.kafka]*.jar
!
kafka~Topic~'RegTest.',Table_Name
kafka~Model~ExactlyOnce
!
! External Properties File
!
java~properties~/control_files/kafka_avro.properties

The two differences in this example are:

• kafka~connect~confluent01:9093
• Port 9093 on the Kafka server confluent01 has been configured to

accept SSL connections
• kafka~avro~SchemaRegistry~http://confluent01:8081

• The Confluent Schema Registry is using the unencrypted http:// proto-
col against port 8081 on Confluent01

• It is possible to configure the Schema Registry to use https

The SSL parameters are specified in the Java Properties file kafka_avro.properties

Java Properties File with SSL

The following example Java Properties file adds SSL information to both authenti-
cate the producer to the Kafka broker and to encrypt the Kafka traffic on the net-
work connection.

#
kafka_avro.properties
#

Notes for the Loader Administrator

38 JCC LogMiner Loader

2018-10-19 kwh
increase batch.size and linger.ms in an attempt
to increase throughput
#
batch.size=65536
linger.ms=25
#
SSL Configuration
#
security.protocol=ssl
ssl.truststore.location=/regtest_ssl/kafka_truststore.jks
ssl.truststore.password=<password 1>
ssl.keystore.location=/regtest_ssl/kafka_keystore.jks
ssl.keystore.password=<password 2>
ssl.key.password=<password 3>
#

The SSL truststore and keystore files and passwords must be provided by the Kafka
administrator.

Because this file contains passwords, the OpenVMS file protection and access con-
trol should be set so that the file is accessible to the JCC LogMiner Loader session,
but not to unprivileged OpenVMS users.

In this example, REGTEST_SSL is a logical name that is defined in the command
procedure that starts the JCC LogMiner Loader job. Alternately, it could be defined
somewhere else in the environment. In this example, the command procedure con-
tains:

$ define/nolog regtest_ssl -
 JCC_ROOT:[KAFKA_XML.JCC.DBA.REGRESSION_TEST.SSL]

The directory contains three files:
Directory JCC_ROOT:[KAFKA_XML.JCC.DBA.REGRESSION_TEST.SSL]
ca-key.;1 2KB/2KB 18-OCT-2018 11:46:49.93 (RWED,RWED,RE,)
kafka_keystore.jks;1 4KB/5KB 18-OCT-2018 11:46:50.47 (RWED,RWED,RE,)
kafka_truststore.jks;1 1KB/2KB 18-OCT-2018 11:46:50.00 (RWED,RWED,RE,)

These are binary files that were provided by the Kafka administrator.

These files can be stored in the JCC_TOOL_LOCAL: directory or in some other
location that makes sense for the environment.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 39

Additional Tuning for Kafka Producer Performance

Additional Tuning for Kafka Producer
Performance
Often, JCC develops performance tuning recommendations from the regression
testing. The biggest influence on performance with the Kafka Option is checkpoint
interval. Checkpoint is a Control File keyword that enables grouping input transac-
tions for output. For example,

CHECKPOINT~50~lml_internal~asynch~<checkpoint filename>

causes up to 50 source transactions to be committed to Kafka in one Kafka transac-
tion.

Tuning and interpretation of performance may include:

• Balancing batch.size and linger.ms and checkpoint to achieve the best results for
overall throughput versus writing each transaction as soon as possible. Check-
point is defined in the Control File and the full documentation has more discus-
sion of it. The batch.size and linger.ms parameters are defined in the Java
Properties File and are discussed in “Java Properties File” on page 35.

• Kafka Option throughput is highly dependent on the source database transaction
workload, including both the overall volume of data and the pattern of updates.

• Physical characteristics of the network can cause performance bottlenecks.
• The cluster configuration and the number of partitions and retention time for a

topic can also influence performance.

Future performance recommendations will be available in documentation updates.

Kafka Model

Kafka documents these models for publishing messages.

• ExactlyOnce
• Transaction

The current release of the JCC LogMiner Loader supports both.

Notes for the Loader Administrator

40 JCC LogMiner Loader

The Kafka Model is also described as a keyword in “Keyword: Kafka~model” on
page 25.

ExactlyOnce

ExactlyOnce semantics are usually associated with a consumer that also is a pub-
lisher. ExactlyOnce is the 2PC (2 Phase Commit) between the consumer topic off-
sets and the messages written to the producer topic(s). For the Loader to (almost)
guarantee this literal definition requires using only 1 thread. The 'almost' is because
the JCC LogMiner Loader checkpoint file is not maintained in a 2PC transaction
with the Kafka transaction. There is a small time window between the point at
which a Kafka Transaction is committed and the point at which the Rdb LogMiner
restart information is written. If a failure occurred during this time, when the JCC
LogMiner Loader restarts, data that had previously been committed to Kafka will
be resent.

When the JCC LogMiner Loader is configured to use multiple threads, the JCC
LogMiner Loader checkpoint contains multiple checkpoints, one for each thread.
On a restart, the JCC LogMiner Loader starts from the oldest checkpoint informa-
tion and so may potentially resend data that had been committed to Kafka prior to
the failure that preceded the restart.

For more information about how Kafka implements ExactlyOnce, see the blog:

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

The section titled “Wait, but what’s exactly-once for non-deterministic operations
anyway?” in the referenced blog is more like the 'ExactlyOnce' provided by the
JCC LogMiner Loader Kafka Option.

Transaction

Kafka transactions are committed using the Checkpoint specified in the JCC Log-
Miner Loader configuration file. These occur at source database transaction bound-
aries. The checkpoint value specifies how many source transactions will be bundled
into a single Kafka transaction.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 41

Logical Names

Logical Names
Logical names provide additional control of the Loader’s actions. Logical names
are mentioned often in the full documentation.

Logical names that are specifically useful for the Kafka Option include these that
are also available for the JDBC target.

• JCC_LML_JAVA_BOOTCLASSPATH
• JCC_LML_JAVA_COMMAND_LINE

Kafka Partitions and Keys
When the JCC LogMiner Loader publishes a message to a Kafka server, it uses the
formatted DBKey of the source as the Kafka key. This ensures that messages for
the same source record go to the same topic partition. Within Kafka, messages on
the same partition will be consumed in the order in which they are published to the
partition. Messages in different partitions may be consumed in different orders.

This example shows that the DETAILS topic on the server kafka01 has 5 partitions:
$ java kafka.admin.TopicCommand --zookeeper kafka01:2181 --topic DETAILS -
_$ --describe
Topic:DETAILS PartitionCount:5 ReplicationFactor:1 Configs:reten-
tion.ms=14400000
 Topic: DETAILS Partition: 0 Leader: 0 Replicas: 0 Isr: 0
 Topic: DETAILS Partition: 1 Leader: 0 Replicas: 0 Isr: 0
 Topic: DETAILS Partition: 2 Leader: 0 Replicas: 0 Isr: 0
 Topic: DETAILS Partition: 3 Leader: 0 Replicas: 0 Isr: 0
 Topic: DETAILS Partition: 4 Leader: 0 Replicas: 0 Isr: 0
$

The appropriate number of partitions for a topic depends on a number of factors
including the Kafka cluster configuration, the volume of data that will be published,
and how the data will be consumed.

Note that this example shows a retention of 14,400,000 milliseconds (4 hours).
Messages published to this topic will be retained by Kafka for 4 hours before they
are discarded. In this example, the retention time was explicitly set with the com-
mand:

$ java kafka.admin.TopicCommand --zookeeper kafka01:2181 -
_$ --topic DETAILS --alter --config retention.ms=14400000

Notes for the Loader Administrator

42 JCC LogMiner Loader

By default, Kafka retains messages for 168 hours. By default, Kafka checks log
segments to see if they need to be retained every 300 seconds. Both the default
retention and the interval between log segment checks can be configured in the
Kafka server configuration file.

The appropriate retention time for a topic depends on a number of factors including
the Kafka cluster configuration, the volume of data that will be published, how the
data will be consumed, and the latency of the consumer.

Date and Timestamp Precision with Avro

The JCC LogMiner Loader converts the OpenVMS timestamp data type to the
Avro LogicalType timestamp-micros data type.

The Avro LogicalType timestamp-micros has a limitation in that it represents, in a
64-bit integer, the number of microseconds (10^-6) from 1970-01-
01T00:00:00.00Z. Since OpenVMS uses 10^-7 increments from 1858-11-
17T00:00:00.00Z, there is much more headroom with Avro timestamp-micros, but
at the loss of precision in the 7th digit after the decimal point. In Avro, negative
values for the number of microseconds are dates before 1970, whereas OpenVMS
uses delta dates.

That means that the valid range of values for Avro far exceeds that of OpenVMS.1

• Minimum: -290308-12-21T19:59:05.224192Z
• Maximum +294247-01-10T04:00:54.775807Z

1. There is much more that can be said about date time variance, including a difference in
clock ticks on different systems, but this is sufficient for understanding the Kafka Option
for JCC LogMiner Loader.

Method Incr. Starting Date Early Dates Advantage

AVRO 10^-6 1970-01-01T00:00:00.00Z negative values for
time before start

range

OpenVMS 10^-7 1858-11-01T00:00:00.00Z delta dates precision

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 43

Comparison of Rdb and Avro Datatypes

For most applications, the difference in precision between OpenVMS timestamps
and Avro timestamp-micros is small enough that it will be unnoticed.

Comparison of Rdb and Avro Datatypes
The following table documents how Rdb data types are mapped to Avro types.

See http://avro.apache.org/docs/1.8.0/spec.html for definitions of logicalTypes.

Rdb SQL Type Prec Scale Avro Type
BIGINT 20 = 0 long

> 0 {"type":"bytes","logicalType":"decimal","preci-
sion":<precision>, "scale":<scale>}

< 0 double
INTEGER 10 = 0 int

> 0 {"type":"bytes","logicalType":"decimal","preci-
sion":<precision>, "scale":<scale>}

< 0 double
SMALLINT 5 = 0 int

> 0 {"type":"bytes","logicalType":"decimal","preci-
sion":<precision>, "scale":<scale>}

< 0 double
TINYINT 3 = 0 int

> 0 {"type":"bytes","logicalType":"decimal","preci-
sion":<precision>, "scale":<scale>}

< 0 double
DOUBLE PRECISION double
FLOAT float
CHAR, VARCHAR string
BINARY, VARBINARY bytes
TIMESTAMP, DATE VMS, DATE
ANSI

{"type":"long","logicalType":"timestamp-
micros"}

DATE {"type":"int","logicalType":"date"}
TIME {"type":"long","logicalType":"time-micros"}

http://avro.apache.org/docs/1.8.0/spec.html

Notes for the Loader Administrator

44 JCC LogMiner Loader

JCC LogMiner Loader 45

CHAPTER 5 Output Format Examples

The JCC LogMiner Loader can publish messages to a Kafka server in
one of three formats:

• XML
• JSON
• AVRO

The remainder of this chapter gives examples and comments perti-
nent to each of these. Note that the examples use different settings for
various options to illustrate the possibilities. The material supplied
here is a set of examples. The formal definition of syntax for Kafka
specific keywords is in “Control File” on page 21 and the formal
definition of other keywords may be found in the full documentation.

You are unlikely to use more than one format, but there is no restric-
tion against separate Loader sessions using different ones of these
and all running simultaneously.

Output Format Examples

46 JCC LogMiner Loader

XML Format for Kafka
This section provides an annotated example to illustrates some possible configura-
tions.

Kafka Specific Configuration Directives - XML

The following shows an example of JCC LogMiner Loader configuration directives
to publish changes to a Kafka server as XML documents.

! Define the Kafka XML Specific stuff
!
! Note that the Kafka classpath *must* be specified in
! OpenVMS format with the wildcard
!
output~kafka~synch~kafka01:9092~record~xml
kafka~classpath~DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar
!
! The following XML configuration and date format
! were added to support a specific Kafka consumer.
xml~header~
xml~null~implicit
date_format~|!Y4-!MN0-!D0 !H04:!M0:!S0.!C6|

Define the target. Use the output keyword to define the target (output type) and
other characteristics. This is required.

output~kafka~synch~kafka01:9092~record~xml

•The Loader target is “kafka”
•Sync is an output keyword option discussed in the full documentation.
•The Kafka server is the node “kafka01” using port 9092
•The output record type is XML

Define the classpath. Provide the OpenVMS disk for finding the jar files. This is
required.

kafka~classpath~DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar

•The classpath for the Kafka jars is
DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar
This is the OpenVMS directory in the example above.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 47

XML Format for Kafka

Define the XML header. Defining a header is optional. By default, a header is
provided.

xml~header~

The format shown in this example excludes the default header. See “Header Syn-
tax” on page 29. The XML Header information was removed in this example to
meet the requirements of a specific Kafka consumer.

Define how to handle NULLS. This is optional. The default is explicit which
includes NULL or the value indicated elsewhere.1

xml~null~implicit

•With the example showen, NULLs are excluded when a column in the
Rdb source is NULL and there is no definition of the column that
includes a value to use instead of NULL.

•Setting xml~null~explicit would send “val=NULL” for a column when
the Rdb source is NULL and there is no definition of the columns that
includes a value to use instead of NULL.

Define the date format. Defining the date format is optional. See also “Date and
Timestamp Precision with Avro” on page 42 and “Comparison of Rdb and Avro
Datatypes” on page 43.

date_format~|!Y4-!MN0-!D0 !H04:!M0:!S0.!C6|

•This Formatted Output mask matches the default format used for time-
stamps.2

•If only two faction digits of preciesion for seconds are required, use:
date_format~|!Y4-!MN0-!D0 !H04:!M0:!S0.!C2|

XML Message Example
Messages are published to Kafka as a single Unicode document -- a single line. The
following example of an XML document is formatted for readability:
<pkt>
 <row name="DETAILS" actn="M">
 <col name="DETAILS_ID" type="num" val="371596"/>

1. See “NULL Syntax” on page 29 or the Version 3.6 documentation or the 3.6 release notes
for a more complete discussion.

2. See Keyword: Date_format in the Control File chapter of the full documentation.

Output Format Examples

48 JCC LogMiner Loader

 <col name="PROGNAME" type="str" len="31" val="DETAILS"/>
 <col name="PROGINDEX" type="str" len="3" val="005"/>
 <col name="SEQNUM" type="num" val="1"/>
 <col name="AMOUNT_F" type="num" val="0.000000000e+00"/>
 <col name="AMOUNT_G" type="num" val=" 0.0000000000000000e+00"/>
 <col name="AMOUNT_N" type="num" val="0.00"/>
 <col name="DATE_VMS" type="dt" val="1918-07-02 10:47:05.936995"/>
 <col name="DATE_ANSI" type="dt" val="2002-10-28 00:00:00.000000"/>
 <col name="TIMESTAMP_A" type="dt" val="2058-04-09 15:53:11.460000"/>
 <col name="ORIGINATING_DBKEY" type="num" val="29273399110598677"/>
 </row>
</pkt>

JSON Format for Kafka
This section provides an example and explanations for Kafka use of the JSON for-
mat.

Kafka Specific Configuration Directives - JSON

The following example, from JCC regression testing, shows the JCC LogMiner
Loader configuration directives to publish changes to a Kafka server as JSON doc-
uments:

!
! Define the Kafka JSON Specific directives
!
! Note that the Kafka classpath *must* be specified in
! OpenVMS format with the wildcard
!
output~kafka~synch~kafka03:9092~record~json
!kafka~classpath~DISK$STATIC:[KAFKA.1-1-0.LIBS]*.jar
kafka~classpath~DISK$STATIC:[KAFKA.2-0-0.LIBS]*.jar
!
JSON~NULL~EXPLICIT
JSON~SCHEMA~REGTEST
!

Define the target. Use the output keyword to define the target (output type) and
other characteristics. This is required and each parameter shown except synch is
required.

output~kafka~synch~kafka03:9092~record~json

•The Loader target is “kafka”

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 49

JSON Format for Kafka

•See the full doc for an explanation of synch.
•The Kafka server is the node “kafka03” using port 9092
•The output record type is JSON

Define the classpath. Provide the OpenVMS disk for finding the jar files. This is
required.

kafka~classpath~DISK$STATIC:[KAFKA.2-0-0.LIBS]*.jar

•The classpath for the Kafka jars is
DISK$STATIC:[KAFKA.2-0-0.LIBS]*.jar
This is using the JAR files from the Kafka 2.0 distribution.

•The asterisk is the required wildcard.

Define how to handle NULLS. This is optional. The default is explicit which
includes NULL or the value indicated elsewhere.1

xml~null~implicit

•With the example showen, NULLs are excluded when a column in the
Rdb source is NULL and there is no definition of the column that
includes a value to use instead of NULL.

•Setting xml~null~explicit would send “val=NULL” for a column when
the Rdb source is NULL and there is no definition of the columns that
includes a value to use instead of NULL.

Define the schema. Schema definition is optional. The schema, if named, will be
included in the document header.

JSON~SCHEMA~REGTEST2

•The JSON document header will include
"schema_name": "REGTEST"

JSON Message Example
The following example is a JSON document formatted for readability:

1. See “NULL Syntax” on page 29 or the Version 3.6 documentation or the 3.6 release notes
for a more complete discussion.

2. Examples are derived from JCC regression testing. “REGTEST” and other naming
relates to that testing.

Output Format Examples

50 JCC LogMiner Loader

{
 "row": {
 "source_name": "KAFKA_JSON2",
 "schema_name": "REGTEST",
 "name": "DETAILS",
 "action": "M",
 "loader_sequence_number": 34020,
 "column_values": {
 "DETAILS_ID": 605335,
 "PROGNAME": "DETAILS",
 "PROGINDEX": "008",
 "SEQNUM": 1,
 "AMOUNT_F": 3.163302002e+02,
 "AMOUNT_G": 3.1633020019531250e+02,
 "AMOUNT_N": 316.00,
 "DATE_VMS": "2053-02-02 07:14:19.8313170",
 "DATE_ANSI": "2008-04-10 00:00:00.0000000",
 "TIMESTAMP_A": "1921-05-03 12:31:36.3300000",
 "ORIGINATING_DBKEY": 29273399475372062,
 }
 }
}

AVRO Format for Kafka

From Wikipedia https://en.wikipedia.org/wiki/Apache_Avro

Avro is a remote procedure call and data serialization framework
developed within Apache's Hadoop project. It uses JSON for
defining data types and protocols, and serializes data in a com-
pact binary format. Its primary use is in Apache Hadoop, where
it can provide both a serialization format for persistent data, and
a wire format for communication between Hadoop nodes, and
from client programs to the Hadoop services.

While this explanation references Hadoop, Avro is equally useful for Kafka. For
Kafka, the important points are:

• The schema registry enables a Kafka consumer to get a description of a record.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 51

AVRO Format for Kafka

• The data serialization means that the message published to Kafka is com-
pressed.

• The consumer must reference the appropriate schema registry information and
de-serialization routine to uncompress the message.

Avro and Schema Registration

The JCC LogMiner Loader Kafka option supports publishing messages in Avro for-
mat with schema registration when the Kafka server includes the Confluent Schema
Registration option. The JCC LogMiner Loader uses the Confluent serialization
routine to compress the message. The consumer must use the Confluent schema
registry information and the Confluent de-serialization routine to retrieve the mes-
sage as a JSON document.

Avro Configuration File Example:

The following example is a configuration file to set up output to a Kafka cluster
using Avro and Schema Registration.
!
! Define the Kafka Avro Specific elements
!
output~kafka~synch~connect~record~Avro
kafka~connect~cnflnt4-04:9092,cnflnt4-03:9092,cnflnt4-02:9092
kafka~avro~SchemaRegistry~http://cnflnt4-04:8081
!
!
kafka~avro~namespace~RegTest.avro
!
!routine to expand wildcards does not work on unix-style names.
!
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.kafkaserde-tools]*.jar
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.confluent-common]*.jar
kafka~classpath~disk$static:[kafka.CONFLUENT-4-1-1.kafka]*.jar
!
kafka~Topic~'RegTest.',Table_Name
!kafka~Model~ExactlyOnce | Transaction | Flush?
!kafka~Model~Transaction
kafka~Model~ExactlyOnce
!
!
! External Properties File
!
java~properties~/control_files/kafka_avro.properties

Define the target. Use the output keyword to define the target (output type) and
other characteristics. This is required.

output~kafka~synch~connect~record~Avro

Output Format Examples

52 JCC LogMiner Loader

• Output is to a Kafka server in Avro format

Define connect. Connect defines the Kafka broker list. Defining connect is
optional, unless schema registry is defined.

kafka~connect~cnflnt4-04:9092,cnflnt4-03:9092,cnflnt4-02:9092

• In this example, the target is a list of Karka brokers in a Kafka Cluster.
If one Kafka broker fails, the JCC LogMiner Loader will fail over and
connect to the next broker

• The broker addresses and port numbers must be provided by whom-
ever is configuring and managing your Kafka server.

• This is a Kafka specific keyword not discussed in the full documenta-
tion.

• This is required for schema registry.

Define the schema registry. This optional parameter provides the URL for Con-
fluent Schema Registry.

kafka~avro~SchemaRegistry~http://cnflnt4-04:8081

• The schema registry address and port numbers must be provided by
whoever is configuring and managing your Kafka server.

• This is a Kafka specific keyword not discussed in the full documenta-
tion.

Define the namespace. This provides a unique name to use in the schema registry.
It is optional, unless the schema registry is defined.

kafka~avro~namespace~RegTest.avro

• The namespace is the unique name within the schema registry under
which all the table definitions reside. The value specified is a field in
each of the Avro table definition JSON documents.

• This is a Kafka specific keyword not discussed in the full documenta-
tion.

• This is required for schema registry.

Define the classpath. This is required and may require multiple statements.

kafka~classpath~<directory>*.jar

• One classpath entry for each directory that needs to be added to the
Java classpath

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 53

AVRO Format for Kafka

• OpenVMS Directory syntax
• For Confluent Kafka, three entries are required:

disk$static:[kafka.CONFLUENT-4-1-1.kafka-serde-tools]*.jar
disk$static:[kafka.CONFLUENT-4-1-1.confluent-common]*.jar
disk$static:[kafka.CONFLUENT-4-1-1.kafka]*.jar

• Disk and directory are site specific

Define Topics. Defining topics in the Control File is optional. The Topic naming
supplied here must be coordinated with the Kafka application. See also “Keyword:
Kafka~topic” on page 24.

kafka~Topic~'RegTest.',Table_Name

• ‘RegTest.’ -- literal prefix that will be the first part of the Kafka Topic
• Table_name -- Keyword, will be replaced by the output table name
• The full syntax is documented in “Keyword: Kafka~topic” on page 24.

Define the Kafka Model. Defining the Kafka model is optional. See also “Key-
word: Kafka~model” on page 25 and “Kafka Model” on page 39.

kafka~Model~ExactlyOnce

• The default is transaction which defines that the Kafka server guaran-
tees that a published message will be available to a consumer at least
once.

• The example sets the model to exactly_once which defines that the
Kafka server guarantees that a published message will be available to a
consumer exactly once.

Point to the Properties File. Naming the properties file is optional. See also “Java
Properties File” on page 35.

java~properties~/control_files/kafka_avro.properties

• Control_files is a logical name pointing to the directory that contains
the properties file.

• Properties file is a text file that can contain a variety of Java properties.

Output Format Examples

54 JCC LogMiner Loader

Avro Message Example
Once an Avro message has been uncompressed (deserialized), it can be viewed as a
JSON document. The following example is such a JSON message formatted for
readability.

{
 "ORIGINATING_DBKEY": 29273399897423884,
 "DETAILS_ID": 875713,
 "PROGNAME": "DETAILS ",
 "PROGINDEX": "004",
 "SEQNUM": 1,
 "AMOUNT_F": 5846.9395,
 "AMOUNT_G": 5846.939453125,
 "AMOUNT_N": {
 "bytes": "\bë?"
 },
 "DATE_VMS": -2529777414675889,
 "DATE_ANSI": -40587,
 "TIMESTAMP_A": 2213681432640000,
 "TIMESTAMP_A_CHAR": "2040-02-24 07:30:32.64",
 "JCCLML_ACTION": "M",
 "LOADER_SEQUENCE_NUMBER": 57,
 "LOADERNAME": "KAFKA_AVRO",
 "LOADER_VERSION": "T03.06.00",
 "LOADER_LINK_DATE_TIME": 1544449674300000,
 "TRANSACTION_COMMIT_TIME": 1544600905798528,
 "TRANSACTION_START_TIME": 1544600905797528,
 "JCCLML_READ_TIME": 1544601031372273,
 "JCCLML_AERCP": "1-28-4761-1202-206182924-206182924",
 "TRANSMISSION_DATE_TIME": 1544601034003222
}

JCC LogMiner Loader 55

CHAPTER 6 Kafka Command
Examples

The following examples use the Java Kafka commands on OpenVMS
and are useful for testing and understanding the Kafka interface.

Setting the Environment for the Examples

Note that Kafka requires Java V8 and that using Java commands requires that the
process be set to parse_style=extended. With parse_style=extended, DCL does not
uppercase all command line input. All of the Kafka commands in the following sec-
tions are case sensitive.

The following example sets the JCC LogMiner Loader version, the Java version,
and the DCL parse_style:

$ @jcc_tool_com:jcc_lml_user 3.6
Setting JCC LogMiner Loader version 3.6
$ jcc_lml_jdbc_user 8.0 -
_$ SYS$COMMON:[java$80.com]java$setup.com
JCC LogMiner Loader Java version 8.0
$ java -version
java version "1.8.0.11-OpenVMS"
Java(TM) SE Runtime Environment (build 1.8.0.11-vms-b1)

Kafka Command Examples

56 JCC LogMiner Loader

Java HotSpot(TM) 64-Bit Server VM (build 25.11-b1, mixed mode)
$ jcc_version
JCC Version T03.06.00 (built 9-NOV-2018 16:41:23.39)

$ set process/parse_style=extended
$

These examples also use the logical name confluent_kafka_path that has been
defined in the JCC Local Environment Command procedure.

Start a Consumer Console

The following example sets up the Kafka ConsoleConsumer to consume messages
from the topic Personnel.EMPLOYEES. The SSL parameters are specified in the
properties.config file KAFKA_AVRO.PROPERTIES.
$ java -cp /confluent_kafka_path/*:. kafka.tools.ConsoleConsumer -
_$ --bootstrap-server confluent01.jcc.com:9093 -
_$ --topic Personnel.EMPLOYEES -
_$ --formatter io.confluent.kafka.formatter.AvroMessageFormatter -
_$ --property schema.registry.url="http://confluent01.jcc.com:8081" -
_$ --consumer.config KAFKA_AVRO.PROPERTIES
{"EMPLOYEE_ID":"00164","LAST_NAME":{"string":"Toliver
"},"FIRST_NAME":{"string":"Alvin "},"MIDDLE_INI-
TIAL":{"string":"A"},"ADDRESS_DATA_1":{"string":"146 Parnell Place
"},"ADDRESS_DATA_2":{"string":" "},"CITY":{"string":"Chocoru
a "},"STATE":{"string":"NH"},"POST-
AL_CODE":{"string":"03817"},"SEX":{"string":"M"},"BIRTHDAY":{"long":-
718416000000000},"STATUS_CODE":{"string":"2"},"TRANSACTION_COMMIT_TIME":{"long"
:1542632686434735},"JCCLML_READ_TIME":{"long":1542632686518735},"TRANSMISSION_D
ATE_TIME":{"long":1542632774582159},"LOADER_SEQUENCE_NUMBER":{"long":12}}
{"EMPLOYEE_ID":"00165","LAST_NAME":{"string":"Smith
"},"FIRST_NAME":null,"MIDDLE_INITIAL":{"string":"D"},"ADDRESS_-
DATA_1":{"string":"120 Tenby Dr. "},"ADDRESS_-
DATA_2":{"string":" "},"CITY":{"string":"Chocorua
"},"STATE":{"string":"NH"},"POST-
AL_CODE":{"string":"03817"},"SEX":{"string":"M"},"BIRTHDAY":{"long":-
493344000000000},"STATUS_CODE":{"string":"2"},"TRANSACTION_COMMIT_TIME":{"long"
:1542632693562609},"JCCLML_READ_TIME":{"long":1542632782489033},"TRANSMISSION_D
ATE_TIME":{"long":1542632782491033},"LOADER_SEQUENCE_NUMBER":{"long":13}}

Note that the output format is a single line per message and is not formatted for
readability.

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 57

Start a Producer Console

Start a Producer Console

An interactive Kafka producer console is useful for testing configuration files and
connectivity. The following example creates a Kafka producer console session for
the topic Test.Topic.

$ set proc/parse_style=extended
$ java -cp /confluent_kafka_path/*:. -
_$ kafka.tools.ConsoleProducer -
_$ --broker-list confluent01:9093 -
_$ --topic Test.Topic -
_$ --producer.config KAFKA_AVRO.PROPERTIES
>This is a test message to Test.Topic
>This is a second test message.
>

This publishes arbitrary text messages to the topic Test.Topic to the Karka server on
the node Confluent01, port 9093.

In another terminal session, a Kafka consumer console can be set up to consume the
messages from the Kafka server:

$ set proc/parse_style=extended
$ java -version
$ java -cp /confluent_kafka_path/*:. -
_$ kafka.tools.ConsoleConsumer -
_$ --bootstrap-server confluent01:9093 -
_$ --topic Test.Topic -
_$ --consumer.config KAFKA_AVRO.PROPERTIES
This is a test message to Test.Topic
This is a second test message.

Setting up a Producer and Consumer is useful for testing connectivity to the Kafka
environment. Because of the complexity of manually formating a JSON or XML
record, a Kafka Producer Console is not useful for production.

List Topics

List the topics on a Kafka server with JCC_Kafka_Topics.
$ set process/parse_style=extended

Kafka Command Examples

58 JCC LogMiner Loader

$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand -
_$ --zookeeper CNFLNT4-04:2181 --list
ALL_DATATYPES_TABLE
RegTest.DETAILS
RegTest.DETAILS_AUDIT
RegTest.PEOPLE
__confluent.support.metrics
__consumer_offsets
__transaction_state
_schemas
avro.ALL_DATATYPES_TABLE
$

See Details of a Topic

Describe the details of a particular topic
$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand -
_$ --zookeeper CNFLNT4-04:2181 --topic RegTest.DETAILS --describe
Topic:RegTest.DETAILS PartitionCount:5 ReplicationFactor:2 Configs:
 Topic: RegTest.DETAILS Partition: 0 Leader: 2 Replicas: 2,3 Isr: 3,2
 Topic: RegTest.DETAILS Partition: 1 Leader: 3 Replicas: 3,1 Isr: 3,1
 Topic: RegTest.DETAILS Partition: 2 Leader: 1 Replicas: 1,2 Isr: 2,1
 Topic: RegTest.DETAILS Partition: 3 Leader: 2 Replicas: 2,1 Isr: 2,1
 Topic: RegTest.DETAILS Partition: 4 Leader: 3 Replicas: 3,2 Isr: 3,2

In this example, the topic RetTest.DETAILS is split across five partitions. Each par-
tition is replicated on two nodes in a three node Kafka cluster.

Change the Partitions for a Topic

The following example increases the number of partitions for the topic
RegTest.DETAILS from 5 to 6
$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand -
_$ --zookeeper CNFLNT4-04:2181 --topic "RegTest.DETAILS" -
_$ --alter --partitions 6
WARNING: If partitions are increased for a topic that has a key, the partition
logic or ordering of the messages will be affected
Adding partitions succeeded!
$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand
_$ --zookeeper CNFLNT4-04:2181 --topic RegTest.DETAILS --describe
Topic:RegTest.DETAILS PartitionCount:6 ReplicationFactor:2 Configs:
 Topic: RegTest.DETAILS Partition: 0 Leader: 2 Replicas: 2,3 Isr: 3,2
 Topic: RegTest.DETAILS Partition: 1 Leader: 3 Replicas: 3,1 Isr: 3,1
 Topic: RegTest.DETAILS Partition: 2 Leader: 1 Replicas: 1,2 Isr: 2,1
 Topic: RegTest.DETAILS Partition: 3 Leader: 2 Replicas: 2,1 Isr: 2,1
 Topic: RegTest.DETAILS Partition: 4 Leader: 3 Replicas: 3,2 Isr: 3,2
 Topic: RegTest.DETAILS Partition: 5 Leader: 1 Replicas: 1,3 Isr: 1,3

Copyright JCC Consulting, Inc., 2002 - 2019. All rights reserved. 59

Create a New Topic

Note that the optimal number of partitions and replicas depends on the Kafka con-
figuration and how it is being used. Choosing the correct configuration is beyond
the scope of this manual.

Create a New Topic

The following example creates a new topic called Personnel.EMPLOYEES
$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand -
_$ --zookeeper CNFLNT4-04:2181 --create --topic Personnel.EMPLOYEES -
_$ --partitions 6 --replication-factor 2
WARNING: Due to limitations in metric names, topics with a period ('.') or
underscore ('_') could collide. To avoid issues it is best to use either, but
not both.
Created topic "Personnel.EMPLOYEES".

The topic Personnel.EMPLOYEES now shows up in the list of topics

$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand --zookeeper CNFL-
NT4-04:2181 --list
ALL_DATATYPES_TABLE
Personnel.EMPLOYEES
RegTest.DETAILS
RegTest.DETAILS_AUDIT
RegTest.PEOPLE
__confluent.support.metrics
__consumer_offsets
__transaction_state
_schemas
avro.ALL_DATATYPES_TABLE

The new topic Personnel.EMPLOYEES has six partitions with two replicas for
each partition.
$ java -cp /confluent_kafka_path/*:. kafka.admin.TopicCommand -
_$ --zookeeper CNFLNT4-04:2181 --topic Personnel.EMPLOYEES --describe
Topic:Personnel.EMPLOYEES PartitionCount:6 ReplicationFactor:2 Configs:
 Topic: Personnel.EMPLOYEES Partition: 0 Leader: 3 Replicas: 3,1 Isr: 3,1
 Topic: Personnel.EMPLOYEES Partition: 1 Leader: 1 Replicas: 1,2 Isr: 1,2
 Topic: Personnel.EMPLOYEES Partition: 2 Leader: 2 Replicas: 2,3 Isr: 2,3
 Topic: Personnel.EMPLOYEES Partition: 3 Leader: 3 Replicas: 3,2 Isr: 3,2
 Topic: Personnel.EMPLOYEES Partition: 4 Leader: 1 Replicas: 1,3 Isr: 1,3
 Topic: Personnel.EMPLOYEES Partition: 5 Leader: 2 Replicas: 2,1 Isr: 2,1
$

It is possible to configure a Kafka server so that topics are created automatically
with the first message published to a topic or to restrict topic creation so that a topic
must be explicitly created. The default number of partitions and replicas can be
configured in the Kafka server, but the create topic command requires that the par-
titions and replication-factor be specified.

Kafka Command Examples

60 JCC LogMiner Loader

Check the status of Consumers

Kafka Consumers can use an explicit group . If multiple consumers specify the
same group, the consumers can run in parallel. Kafka tracks the offset for each con-
sumer so that consumers within a group do not get duplicate copies of messages.

The kafka.admin.ConsumerGroupCommand can be used to retrieve information
about the current status of consumers. In the following example, the Kafka consum-
ers are using the group “GroupAvro”. The interesting column in this example is
LAG. This is the number of messages that have been published to the Kafka server
but have not yet been consumed.
$ java -cp /confluent_kafka_path/*:. kafka.admin.ConsumerGroupCommand -
_$ --bootstrap-server cnflnt4-02.jcc.com:9093 -
_$ --group GroupAvro -
_$ --describe -
_$ --command-config KAFKA_AVRO.PROPERTIES
Note: This will not show information about old Zookeeper-based consumers.

TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG
RegTest.DETAILS 0 15167958 15170338 2380
RegTest.DETAILS 1 15161694 15164178 2484
RegTest.DETAILS 2 15169594 15171990 2396
RegTest.DETAILS 3 15171111 15173487 2376
RegTest.DETAILS 4 15162272 15164735 2463
RegTest.DETAILS 5 6488404 6490773 2369
RegTest.DETAILS_AUDIT 0 15132437 15132437 0
RegTest.DETAILS_AUDIT 1 15124631 15124631 0
RegTest.DETAILS_AUDIT 2 15129652 15129652 0
RegTest.DETAILS_AUDIT 3 15135289 15135289 0
RegTest.DETAILS_AUDIT 4 15126100 15126100 0
RegTest.DETAILS_AUDIT 5 6602087 6602087 0
RegTest.PEOPLE 0 10963940 10964178 238
RegTest.PEOPLE 1 10957708 10958010 302
RegTest.PEOPLE 2 10961103 10961103 0
RegTest.PEOPLE 3 10971694 10971694 0
RegTest.PEOPLE 4 10973754 10974100 346
RegTest.PEOPLE 5 5131130 5132037 907
$

For readability of the example, three columns have been truncated from the right
side of each line, CONSUMER-ID, HOST, and CLIENT-ID.

	Table of Contents
	Contact Information
	Notices
	CHAPTER 1 JCC LogMiner Loader Kafka Option
	Kafka Option
	Regression Testing
	Kafka Documentation and Licensing
	Introduction to Kafka for Rdb Users
	Kafka
	Producer
	Consumer
	Messages
	Topics
	Kafka Clusters
	Zookeeper
	Additional Kafka Details and This Document

	Introduction to Rdb for Kafka Users
	OpenVMS
	Transactions
	Push

	Guide to the Documentation
	TABLE 1. Documentation

	CHAPTER 2 Installation
	Kafka Libraries
	Apache Kafka Windows Installation
	Confluent Kafka Installation
	Kafka Libraries from VMS Software, Inc.

	Kafka Library Location
	VMS Privileges Needed with Avro
	JCC Local Environment Command Procedure
	Configuring the Local Environment
	Example Startup

	CHAPTER 3 Control File
	Output Keyword and Kafka
	Syntax
	Remaining parameters

	Example

	Keyword: Kafka
	Syntax
	Parameters
	<attribute>
	<value>

	Keyword: Kafka~connect
	Syntax
	Parameters
	<Kafka boot servers>

	Example

	Keyword: Kafka~classpath
	Syntax
	Parameters
	<required jar file for JDBC driver>

	Example

	Keyword: Kafka~topic
	Syntax
	Parameters
	<tag>|<quoted constant>

	Examples
	TABLE 1. Topics and Resultant Text

	Keyword: Kafka~model
	Syntax
	Parameters
	Attribute
	Value
	TABLE 2. Avro Attributes and Values

	Examples

	Keyword: Kafka~header
	Syntax
	Parameters
	name
	<tag>|<quoted constant>

	Examples

	Keyword: Kafka~Avro
	Syntax
	Parameters
	Attribute
	Value
	TABLE 3. Avro Attributes and Values

	Examples

	Keyword: XML
	Header Syntax
	TABLE 4. XML Header Options

	NULL Syntax

	Keyword: JAVA
	Syntax
	Parameters
	Example

	Extensions to Existing Keywords
	Creating the Control File and Kafka Topics
	Kafka Topics: Example 1

	CHAPTER 4 Notes for the Loader Administrator
	Java Properties File
	Batch Size
	Linger.ms
	Tuning with the Java Properties File

	SSL Encryption
	Java Properties File with SSL

	Additional Tuning for Kafka Producer Performance
	Kafka Model
	ExactlyOnce
	Transaction

	Logical Names
	Kafka Partitions and Keys
	Date and Timestamp Precision with Avro
	Comparison of Rdb and Avro Datatypes

	CHAPTER 5 Output Format Examples
	XML Format for Kafka
	Kafka Specific Configuration Directives - XML
	Define the target
	Define the classpath
	Define the XML header
	Define how to handle NULLS
	Define the date format

	XML Message Example

	JSON Format for Kafka
	Kafka Specific Configuration Directives - JSON
	Define the target
	Define the classpath
	Define how to handle NULLS
	Define the schema

	JSON Message Example

	AVRO Format for Kafka
	Avro and Schema Registration
	Avro Configuration File Example:
	Define the target
	Define connect
	Define the schema registry
	Define the namespace
	Define the classpath
	Define Topics
	Define the Kafka Model
	Point to the Properties File

	Avro Message Example

	CHAPTER 6 Kafka Command Examples
	Setting the Environment for the Examples
	Start a Consumer Console
	Start a Producer Console
	List Topics
	See Details of a Topic
	Change the Partitions for a Topic
	Create a New Topic
	Check the status of Consumers

